3.248 \(\int \frac{(e \sec (c+d x))^{9/2}}{(a+i a \tan (c+d x))^3} \, dx\)

Optimal. Leaf size=116 \[ \frac{10 i e^4 \sqrt{e \sec (c+d x)}}{3 a^3 d}-\frac{10 e^4 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \sec (c+d x)}}{3 a^3 d}+\frac{4 i e^2 (e \sec (c+d x))^{5/2}}{3 a d (a+i a \tan (c+d x))^2} \]

[Out]

(((10*I)/3)*e^4*Sqrt[e*Sec[c + d*x]])/(a^3*d) - (10*e^4*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[e*Se
c[c + d*x]])/(3*a^3*d) + (((4*I)/3)*e^2*(e*Sec[c + d*x])^(5/2))/(a*d*(a + I*a*Tan[c + d*x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.133941, antiderivative size = 116, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3500, 3501, 3771, 2641} \[ \frac{10 i e^4 \sqrt{e \sec (c+d x)}}{3 a^3 d}-\frac{10 e^4 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \sec (c+d x)}}{3 a^3 d}+\frac{4 i e^2 (e \sec (c+d x))^{5/2}}{3 a d (a+i a \tan (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[(e*Sec[c + d*x])^(9/2)/(a + I*a*Tan[c + d*x])^3,x]

[Out]

(((10*I)/3)*e^4*Sqrt[e*Sec[c + d*x]])/(a^3*d) - (10*e^4*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[e*Se
c[c + d*x]])/(3*a^3*d) + (((4*I)/3)*e^2*(e*Sec[c + d*x])^(5/2))/(a*d*(a + I*a*Tan[c + d*x])^2)

Rule 3500

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(2*d^2
*(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1))/(b*f*(m + 2*n)), x] - Dist[(d^2*(m - 2))/(b^2*(m + 2*n
)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a
^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (Integers
Q[n, m + 1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]

Rule 3501

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(d^2*
(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1))/(b*f*(m + n - 1)), x] + Dist[(d^2*(m - 2))/(a*(m + n -
1)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2
 + b^2, 0] && LtQ[n, 0] && GtQ[m, 1] &&  !ILtQ[m + n, 0] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(e \sec (c+d x))^{9/2}}{(a+i a \tan (c+d x))^3} \, dx &=\frac{4 i e^2 (e \sec (c+d x))^{5/2}}{3 a d (a+i a \tan (c+d x))^2}-\frac{\left (5 e^2\right ) \int \frac{(e \sec (c+d x))^{5/2}}{a+i a \tan (c+d x)} \, dx}{3 a^2}\\ &=\frac{10 i e^4 \sqrt{e \sec (c+d x)}}{3 a^3 d}+\frac{4 i e^2 (e \sec (c+d x))^{5/2}}{3 a d (a+i a \tan (c+d x))^2}-\frac{\left (5 e^4\right ) \int \sqrt{e \sec (c+d x)} \, dx}{3 a^3}\\ &=\frac{10 i e^4 \sqrt{e \sec (c+d x)}}{3 a^3 d}+\frac{4 i e^2 (e \sec (c+d x))^{5/2}}{3 a d (a+i a \tan (c+d x))^2}-\frac{\left (5 e^4 \sqrt{\cos (c+d x)} \sqrt{e \sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 a^3}\\ &=\frac{10 i e^4 \sqrt{e \sec (c+d x)}}{3 a^3 d}-\frac{10 e^4 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \sec (c+d x)}}{3 a^3 d}+\frac{4 i e^2 (e \sec (c+d x))^{5/2}}{3 a d (a+i a \tan (c+d x))^2}\\ \end{align*}

Mathematica [A]  time = 0.383465, size = 125, normalized size = 1.08 \[ \frac{2 e^4 \sec ^3(c+d x) \sqrt{e \sec (c+d x)} (\sin (2 (c+d x))-i \cos (2 (c+d x))) \left (3 \sin (c+d x)-7 i \cos (c+d x)+5 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) (\cos (c+d x)+i \sin (c+d x))\right )}{3 a^3 d (\tan (c+d x)-i)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Sec[c + d*x])^(9/2)/(a + I*a*Tan[c + d*x])^3,x]

[Out]

(2*e^4*Sec[c + d*x]^3*Sqrt[e*Sec[c + d*x]]*((-7*I)*Cos[c + d*x] + 5*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2,
2]*(Cos[c + d*x] + I*Sin[c + d*x]) + 3*Sin[c + d*x])*((-I)*Cos[2*(c + d*x)] + Sin[2*(c + d*x)]))/(3*a^3*d*(-I
+ Tan[c + d*x])^3)

________________________________________________________________________________________

Maple [A]  time = 0.272, size = 175, normalized size = 1.5 \begin{align*} -{\frac{2\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}}{3\,d{a}^{3}} \left ({\frac{e}{\cos \left ( dx+c \right ) }} \right ) ^{{\frac{9}{2}}} \left ( 5\,i\cos \left ( dx+c \right ) \sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( \cos \left ( dx+c \right ) -1 \right ) }{\sin \left ( dx+c \right ) }},i \right ) +5\,i\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( \cos \left ( dx+c \right ) -1 \right ) }{\sin \left ( dx+c \right ) }},i \right ) -4\,i \left ( \cos \left ( dx+c \right ) \right ) ^{2}-4\,\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) -3\,i \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sec(d*x+c))^(9/2)/(a+I*a*tan(d*x+c))^3,x)

[Out]

-2/3/a^3/d*(e/cos(d*x+c))^(9/2)*cos(d*x+c)^4*(5*I*cos(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+
1))^(1/2)*EllipticF(I*(cos(d*x+c)-1)/sin(d*x+c),I)+5*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1
/2)*EllipticF(I*(cos(d*x+c)-1)/sin(d*x+c),I)-4*I*cos(d*x+c)^2-4*cos(d*x+c)*sin(d*x+c)-3*I)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(9/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{{\left (3 \, a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )}{\rm integral}\left (\frac{5 i \, \sqrt{2} e^{4} \sqrt{\frac{e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (-\frac{1}{2} i \, d x - \frac{1}{2} i \, c\right )}}{3 \, a^{3} d}, x\right ) + \sqrt{2}{\left (10 i \, e^{4} e^{\left (2 i \, d x + 2 i \, c\right )} + 4 i \, e^{4}\right )} \sqrt{\frac{e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac{1}{2} i \, d x + \frac{1}{2} i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{3 \, a^{3} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(9/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

1/3*(3*a^3*d*e^(2*I*d*x + 2*I*c)*integral(5/3*I*sqrt(2)*e^4*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(-1/2*I*d*x -
1/2*I*c)/(a^3*d), x) + sqrt(2)*(10*I*e^4*e^(2*I*d*x + 2*I*c) + 4*I*e^4)*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1
/2*I*d*x + 1/2*I*c))*e^(-2*I*d*x - 2*I*c)/(a^3*d)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))**(9/2)/(a+I*a*tan(d*x+c))**3,x)

[Out]

Exception raised: AttributeError

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (e \sec \left (d x + c\right )\right )^{\frac{9}{2}}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(9/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((e*sec(d*x + c))^(9/2)/(I*a*tan(d*x + c) + a)^3, x)